Department of Complex Matter
Jamova cesta 39, 1000 Ljubljana, Slovenia

Dynamics of Quantum matter

We explore non-equilibrium many-body dynamics in quantum systems that experience symmetry-breaking, topological, or jamming transitions. These systems encompass superconductors, charge-density wave, and magnetic materials.

Experimental Soft Matter Physics

The research is conducted within the “Light and Matter” research program. The interaction of light with matter is one of the most important fields of physics and optical processes are indispensable in many branches of modern industry.

For students

Are you searching for an exciting and innovative topic for your seminar, summer work, or perhaps for a Masters or Diploma research? Check available topics an start your research journey with us.

Job opportunities

We are searching for talents! If you are searching for PhD position, if you are a motivated postdoc or senior researchers, check open positions and proposed research topics.

Our partners

We strongly believe that collaboration helps provide opportunities. We collaborate with other research institutions, businesses and industry. Learn here about our associates and how to become our partner.

February 6, 2024
The absence of efficient light modulators for extreme ultraviolet - EUV and X-ray photons considerably limits their real-life application, particularly when even slight complexity of the beam patterns is required. In ...

Home / News / New method for fabrication of nanoscale pitch and microscale height lamellar str…

New method for fabrication of nanoscale pitch and microscale height lamellar structures published in Advanced Functional Materials

January 26, 2023

A team from University College London in Great Britain and dr. Gašper Kokot from the Complex matter department at „Jožef Stefan“ Institute have published an article titled „Fabrication of High-Aspect Ratio Nanogratings for Phase-Based X-Ray Imaging“ in Advanced Functional Materials. Diffractive optical elements such as periodic gratings are fundamental devices in X-ray imaging – a technique that medical, material science, and security scans rely upon. They developed a new method for lamellar structure fabrication with nanoscale pitch and microscale height with aspect ratios of more than 40. Their excellent diffractive abilities were demonstrated at a synchrotron facility. Besides succesfull aplication of these structures in the context of X-ray diffraction gratings, they theoretically explored physical limitations of the method and stability of such structures in general. Production of such lamellae is important for a range of applications from sensors, batteries, solar cells, superhydrophobic surfaces to mechano-bactericidal materials. 

You can read the publication here: